A Novel Rac1-GSPT1 Signaling Pathway Controls Astrogliosis Following Central Nervous System Injury.

نویسندگان

  • Taiji Ishii
  • Takehiko Ueyama
  • Michiko Shigyo
  • Masaaki Kohta
  • Takeshi Kondoh
  • Tomoharu Kuboyama
  • Tatsuya Uebi
  • Takeshi Hamada
  • David H Gutmann
  • Atsu Aiba
  • Eiji Kohmura
  • Chihiro Tohda
  • Naoaki Saito
چکیده

Astrogliosis (i.e. glial scar), which is comprised primarily of proliferated astrocytes at the lesion site and migrated astrocytes from neighboring regions, is one of the key reactions in determining outcomes after CNS injury. In an effort to identify potential molecules/pathways that regulate astrogliosis, we sought to determine whether Rac/Rac-mediated signaling in astrocytes represents a novel candidate for therapeutic intervention following CNS injury. For these studies, we generated mice with Rac1 deletion under the control of the GFAP (glial fibrillary acidic protein) promoter (GFAP-Cre;Rac1flox/flox). GFAP-Cre;Rac1flox/flox (Rac1-KO) mice exhibited better recovery after spinal cord injury and exhibited reduced astrogliosis at the lesion site relative to control. Reduced astrogliosis was also observed in Rac1-KO mice following microbeam irradiation-induced injury. Moreover, knockdown (KD) or KO of Rac1 in astrocytes (LN229 cells, primary astrocytes, or primary astrocytes from Rac1-KO mice) led to delayed cell cycle progression and reduced cell migration. Rac1-KD or Rac1-KO astrocytes additionally had decreased levels of GSPT1 (G1 to S phase transition 1) expression and reduced responses of IL-1β and GSPT1 to LPS treatment, indicating that IL-1β and GSPT1 are downstream molecules of Rac1 associated with inflammatory condition. Furthermore, GSPT1-KD astrocytes had cell cycle delay, with no effect on cell migration. The cell cycle delay induced by Rac1-KD was rescued by overexpression of GSPT1. Based on these results, we propose that Rac1-GSPT1 represents a novel signaling axis in astrocytes that accelerates proliferation in response to inflammation, which is one important factor in the development of astrogliosis/glial scar following CNS injury.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Role of Mammalian Target of Rapamycine Signaling Pathway in Central Nervous System Cancers: A Review

Mammalian mechanistic target of rapamycine (mTOR) is a conserved serine/threonine kinase in the cellular PI3K/Akt/mTOR signaling pathway. This pathway is modified by cellular alterations such as level of energy, growth factors, stresses, as well as the increased environmental level of cancerous cytokines. In general, increase of this kinase protein function is seen in various types of cancers, ...

متن کامل

Hyaluronan-CD44 interaction stimulates Rac1 signaling and PKN gamma kinase activation leading to cytoskeleton function and cell migration in astrocytes.

Both hyaluronan [HA, the major glycosaminoglycans in the extracellular matrix (ECM)] and CD44 (a primary HA receptor) are associated with astrocyte activation and tissue repair following central nervous system (CNS) injury. In this study we investigated the question of whether HA-CD44 interaction influences astrocyte signaling and migration. Our data indicated that HA binding to the cultured as...

متن کامل

Traumatic scratch injury in astrocytes triggers calcium influx to activate the JNK/c-Jun/AP-1 pathway and switch on GFAP expression.

Astrocyte activation is a hallmark of central nervous system injuries resulting in glial scar formation (astrogliosis). The activation of astrocytes involves metabolic and morphological changes with complex underlying mechanisms, which should be defined to provide targets for astrogliosis intervention. Astrogliosis is usually accompanied by an upregulation of glial fibrillary acidic protein (GF...

متن کامل

P36: Role of Brain-Derived Neurotrophic Factor in Pathogenesis and Treatment of Post-Traumatic Stress Disorder

Post-traumatic stress disorder (PTSD) is a syndrome causing from a severe traumatic happening that leads to threatened death or injury. PTSD is associated with changes in limbic, hippocampal, and prefrontal cortical region function due to changes in synaptogenesis, dendritic modifying, and neurogenesis. Changes in neuron in PTSD patients result from pathophysiological disturbances in inflammato...

متن کامل

Astrogliosis Induced by Brain Injury Is Regulated by Sema4B Phosphorylation

Injury to the CNS induces astrogliosis, an astrocyte-mediated response that has both beneficial and detrimental impacts on surrounding neural and non-neural cells. The precise signaling events underlying astrogliosis are not fully characterized. Here, we show that astrocyte activation was altered and proliferation was reduced in Semaphorin 4B (Sema4B)-deficient mice following injury. Proliferat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 292 4  شماره 

صفحات  -

تاریخ انتشار 2017